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Summary

AXE, An Experimentation Environment for Parallel Systems, was designed to facilitate research

for parallel systems at the "process level" using discrete-time simulation -- without resorting to

lengthy instruction-set level simulations or general stochastic models. It provides an integrated

environment for specifying computation models, multiprocessor architectures, simulation, data

collection and performance visualization. The user may study resource management strategies,

parallel problem formulation, alternate hardware architectures, and operating system algorithms.

AXE's simple, structured user-interface enables the user to model parallel programs]machines

precisely and efficiently. Its quick turn-around time keeps the user interested and productive. The

user can also observe the simulation on the color screen via four major panels:

• the Muhiprocessor Activity Panel displays CPU bottlenecks and message routing;

• the System Load Panel illustrates the overall utilization of processing sites in the system;

• the Global Traffic Panel monitors the amount of inter-site communication; and

• the Process Status Panel traces the dynamic status of the software.

AXE models multiprocessors as a collection of sites. A site represents various operating system

functions available for management and execution of the computation. The user may easily

modify various architectural parameters of the multiprocessor such as the number of sites,

connection topologies, routing algorithms, communication link bandwidfl_s, and various CPU

overhead for operating system activities.

Parallel computations in AXE are represented as collections of autonomous computing objects

known as players. Players may be created either at compile-time or run-time. Each player is an

instantiation of a specific player type. There are no shared data structures. Messages are

exchanged asynchronously. A player may block to accept only messages of a specific O,pe (while

others queue up temporarily). Players may be used to represent parallel code-bodies (e.g.

fork/join), communicating processes, Halstead'sfutures, remote procedures, and a subset of

Hewitt's actors. A BEHAVIOR DESCRIPTION LANGUAGE (BDL) is used to specify such models.

BDL program models preserve the interaction patterns between players and their processing

requirements.

The AXE software package is being used at NASA Ames Research Center for research and

development activities in high performance computing.



1. Introduction

1.1. Background

Realistic evaluation of new multiprocessor architectures and the accompanying resource

management tools depends on the study of real applications on actual multiprocessor prototypes.

I towever, the development of complete language and compiler tools, together with run-time

environments is currently prohibitive for short term use in research. Therefore, An

Ex__erimentation Environment, AXE, was designed to facilitate such investigations at the "process

level" using discrete-time simulation -- without the need to resort to lengthy instruction-set level

simulations or general stochastic models.

Researchers at Ames Research Center are using AXE to study dynamic load-balancing strategies

for highly parallel systems [i]. It provides an integrated environment for computation model

specification (using BDL), multiprocessor architecture specification, simulation, automated data

collection and performance visualization. The researcher is able to study resource management

strategies, parallel problem formulation, alternate hardware architectures, and operating system

algorithms: -AXE i_s!nlple, structured user-interface enables the experinaenter to model different

parallel programs and define various machines precisely and efficiently. Its quick turn-around

time for experiments keeps the researcher interested and productive.

1.2. Software Architecture Overview

Three disciplines were observed when designing AXE !

i i structured user-interface enabling the researcher to model different parallel programs

and machines precisely and efficiently;

2. quick turn-around time for experiments -- keeping the researcher interesied and

productive;

3. minimized need for re-compilation -- AXE is structured so that a maximum number of

parameters may be modified without needing re-compilation. These include machine

characteristics, operating system parameters, input data, simulation data collection methods

as well as the selection of heuristics for studying resource management strategies.
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As shownin Figure1-1,AXEis madeupof two majorcomponents,theModelling Package and

the Visualization Package. The six components that make up both packages will be discussed in

the next sections.

AXE Modelling Package

Behavior Description

Language (BDL)

AXE/CSIM

Instrumentation

Options

AXE Visualization Package

• [ "Application Specific

1 Performances,. Display Panels 6

/ System Performance

Statistics Display
2 Panels 5

,._ Activity & Status
3 r Display Panels 4

t* • _a

Figure 1-1. Components of the AXE Experimentation Environment

1.2.1 The AXE Modelling Package

The AXE Modelling Package facilitates specification of parallel hardware and software models as

well as simulation of their interactions. This package is made up of three basic software

components as shown in Figure 1-1:

1. BEHAVIOR DESCRIPTION LANGUAGE (BDL) TRANSLATOR: Models of parallel

computations are specified in AXE using BDL. The BDL translator, implemented as a

separate front-end to AXE, converts BDL models into forms understood by other AXE

modules. BDL follows an object-oriented LISP-like syntax. A parallel application may be

specified using players that interact with one another via message passing. This

communicating players paradigm gives the user a powerful and flexible tool for generating

parallel application models whose performance is to be analyzed by AXE.

2. AXE/CSIM SIMULATOR: AXE/CSIM is a discrete-time event-driven simulator based on

CSIM [2]. AXE/CSIM simulates the execution BDL program models on a variety of

multiprocessor architectures. The performance behavior of various BDL program models

running on various nmltiprocessor architectures may then be predicted and analyzed.

3. INSTRUMENTATION OPTIONS: The user may be interested in a variety of performance

data which encompass application-specific issues, overall performance predication, load

balancing information and many other perfomaance issues. The Instrumentation Options

component of AXE allows the user to define and generate the desired performance data sets

to his/her particular interests.



1.2.2 The AXE Visualization Package

Thedatageneratedby thesimulationsbytheModelling Package are of little use unless the user

has a clear and efficient means of displaying it. The AXE Visualization Package provides a flexible

set of performance data analysis and representation tools. As shown in Figure 1-1, the Visualiza-

tion Package may be classified into three major components.

4. ACTIVITY AND STATUS DISPLAY PANELS animate various performance parameters of the

system during simulation. These displays can be used to examine the state of each

processor and its interaction with other processors at every instant of the simulation. These

"instantaneous" displays can be Very Useful in finding particular System bottlenecks.

5. SYSTEM PERFORMANCE STATISTICS DISPLAY PANELS plot the variation of performance

parameters and statistics over a specified period of time. With these display panels, the

user may identify the overall performance of the specified model. In addition, this class of

display panels can be very helpful in identifying the various phase and state changes that

may occur in the modelled system over timel Instead of having to monitor an animation of

the system running over a long period moment-by-moment, the modeler may quickly

recognize trends or patterns of performance that occur over time.

6. APPLICATION SPECIFIC DISPLAY PANELS: When evaluating a modelled system, it is

often useful to correlate the system performance data with the behavior of the application

that is causing the performance behavior. For this reason, the AXE Visualization Package

allows the user to create display panels that are application specific.

1.2.3. AXE System Requirements

Portability has been a major consideration in the design and implementation of AXE. The

workstation requirements for successful execution of AXE are as follows:

AXE Modelling Package runs on any hardware platform that CSIM executes (See [3]). These

include Sun3, Sun4, SunSparc, DecStation 3100 and 5000, Sequent, VAXen etc.

AXE Visualization Package runs on workstation environments on which X-Windows

(X11R4) are mounted. Examples include SGI, Sun3, Sun4, SunSparc, DecStation 3100

and 5000.

It should be noted that event trace files that are output by the AXE Modelling Package can become

quite large. The user should take this consideration into account before attempting to run large

complex models.
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1.3. Report Outline

Chapter2 describestheAXE Performance Visualization Package. Both hardware and software

status are monitored. Examples of monitored parameters/activities include changing ready-queue

lengths, message sending, cpu load distribution, and whether players are active, blocked, or idle.

There are six major panels that can be displayed on one or two color displays. The user can pause

during the playback of the simulation and reconfigure the screen to permit detailed observation of

the activities displayed in any particular panel.

Chapter 3 describes how parallel architectures are modelled in AXE. Basically, AXE models

multiprocessors as a collection of predefined sites. Machine topology and system overhead may

be tailored further by the user parametrically. A discrete-time event-driven simulator based on

CSIM is responsible for simulating the execution of BDL program models on these multiprocessor

models.

Chapter 4 describes how parallel software is modelled in AXE. A parallel computation is rep-

resented as a collection of autonomous computing processes (or objects) known as players.

Messages are exchanged asynchronously between players. A BEHAVIOR DESCRIPTION

LANGUAGE (BDL) used to specify the behavior of players is also described. Two examples in-

volving the building of abstract execution models for parallel programs are then given.

Chapter 5 summarized the work presented here and gives directions for future research and

development.

2. The AXE Visualization Package

The use of color graphics to represent parallel program execution on multicomputers has been

researched elsewhere to help interpret parallel system performance (4] as well as alternative

architectures for executing parallel knowledge-based systems [5]. The monitoring facilities in AXE

were designed primarily to display resource utilization in multicomputers and help locate software

bottlenecks for player programs.

When compiled with the proper switches (see [6]), AXE will create a trace file containing events

generated during a run. This event file is used to drive the AXE Visualization Package described in

this section. Both hardware and software status are monitored. Examples of monitored

parameters/activities include changing ready-queue lengths, message sending, player creation/

temfination, and whether players are active, blocked, running or idle. There are six major panels



thatcanbedisplayedononeor two colorscreens.Theusercanpauseduringtheplaybackof the

simulationandreconfigurethescreento permitdetailedobservationof theactivitiesdisplayedin

anyparticularpanel.

2.1. Display Philosophy
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Simulation Time

Figure 2-1. Effect of Displayed Load Values Using Various Values of a and b

Before discussing what the color bars that change heights mean in each panel, the relationship

between the actual color (and height) observed and the actual parameter value are presented here.

Instead of using the instantaneous lengths of the ready-queue and message queues directly, a

moving-average function is used with the AXE Visualization Package. Suppose that the length of

the ready2queue (at some site) at time "c is 3.'v if the display is to be updated at time "I:1, the

displayed queue-length is computed according to a._,rt + bX'r2 where X'r2 = the last displayed

value, a and b are non-negative constants and a + b = 1. The moving-average function is used to

filter out rapid varying load values so that the researcher can observe general trends in load

variation easily. As illustrated in Figure 2-1, in order to track the actual load more closely, higher

values should be chosen for a.

0.25 -

[] actual load

--. a = b = 0.5 (with update)

a = b = 0.5 (w/o update)

Simulation Time

Figure 2-2. Effect of a "Self-updating" Panel
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BecauseAXEis anevent-drivensimulator,thepanelisupdated(bydefault)only everytimea

processis addedor removedfrom theready-queue.Unfortunately,whenaprocessis scheduled
andexecutesfor a longtime,theloadvalueatthatsitewill neverreachtheactualvaluebecauseof

theeffectof themoving-averagefunction.Figure2-2illustratesthissituationwhentheloadof a

siteis changedfrom 0 to 1. Therefore,theACTIVITY AND STATUS DISPLAY PANELS are

designed so that each site updates its load value every now and then. This update interval is

settable by the user (see [6]).

2.2. Panel Description

2.2.1 Multiprocessor Activity Panel

The Multiprocessor Activity

Panel displays CPU usage and

message routing. As shown in

Figure 2-3, a multicomputer which

consists of 16 processing sites

connected as a 2-dimensional grid

is simulated. A line joining two

adjacent sites indicates that a mes-

sage is being transmitted between

them. A vertical color bar on the

left-hand-side of the panel

illustrates the color scheme used

-- light blue representing the

lowest load, through green, yellow

and red, to magenta as the highest.

Each site contains two color Figure 2-3. The Multiprocessor Activily Panel

columns. The one on the left-hand-side (called CPU load indicator) indicates how busy the CPU at

that site is by both changes in height and color. The one on the right hand-side (called router

processor load indicator) illustrates how busy the communication processor is using a similar

color scheme. Where the color of the CPU load indicator represents average length of ready-

queue, the color of the router processor load indicator indicates the average number of packets

waiting to be routed at each site. The relative width of CPU load indicator and the router

processor load indicator can be adjusted to display the distribution of CPU or traffic hot spots.
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2.2.2 System Load Panel and Global Traffic Panel

The System Load Panel and Global Traffic Panel look very much alike as Figure 2-4. illustrates.

The System Load Panel displays the overall utilization of processing sites in the system. The

number of active sites is plotted against simulation time. The Global Traffic Panel, on the other

hand, monitors the amount of inter-site communication. The rate of messages sent across sites is

plotted against simulation time. Data of more than one simulation can be plotted on top of one

another. This feature is especially useful when comparing the performance of two mappings.

Simulation Time

Figure 2-4. The System Load Panel and Global Traffic Panel

2.2.3 Site Load Distribution Panel

The Site Load Distribution Panel plots the "loacF' of all the sites in ascending order. The load of

a site is the average ready-queue length for some user-settable time interval. Load distribution is

"even" if the curve resembles a "plateau" as shown in Figure 2-5a.

ution Panel

(a) "Closer-to Ideal" Distribution

i Site Load Distribution Panel

(b) Undesirable Distribution

Figure 2-5. The Site Load Distribution Panel

2.2.4 Process Status Panel

The Process Status Panel (Figure 2-6.) traces the dynamic status of the software. Like the multi-

processor activity panel, the 2-dimensional grid of sites is represented as an array of rectangles.



Inside each site are a number of smaller rectangles, each of which, in turn, is divided into two color

columns. The one on the left (called the "message queue-length indicator") indicates the number

of unprocessed messages queued up in the message buffer of that particular player. The one on

the right, called "player status indicator", represents the state each resident player is in:

Empty (1"']): no player

is instant!ated L Q.L. = 20 Process Status Panel

Yellow (_)i player is _ _ _ 1"_ _ _ I-_ 1"_

scheduled, ready to _ _ _ [-_ _ _ I-_

make use of (but have IT'] rl] [_ IT-] _ _ I-_

not got hold of) the
ffzlrvA

CPU (i.e. it is in the _ _ ['_ IT'] _ _ ['_

ready queue); ['l--] ['T"] ['l-'] IF] 1"71 IT-] _ ['[--]

Red (_): player gets

hold of the CPU and is _ _ I]-'] 1"_ r]_] I'_ _

executing (under the IT-] I-]--I IT'-I 1"_ _ 1"I-"] I-_ IT]

currently available

models, there will be _ _ _ _ _ _ ['_ I'_

at most one such _ _ _ _ _ _ I-_

Q.L.=0 [_ ["_ [_[_] [-_[_ _ IT--]
player per site);

Blue (_): player is
Figure 2-6. The Process Stalus Panel

blocked, waiting for activated

the arrival of a specific Scheduled _ _

message from another player gets I finishes _ Idle

hold _p

(e.g. the reply to a message it of CPU rocessing

sent earlier, the evaluation of a

future or the return of a _" message arrives_ Blocked

remote procedure call); Executing waits for message

Grey (_): otherwise, the

player is in a dormant or idle Figure 2-7. State Transition for a Computing Process

state, waiting to be activated by the ,arrival of a message.

In the case of Figure 2-6, up to 6 players can be monitored at each site. Figure 2-7. illustrates the

events that cause state transition for processes. The relative width of the message queue-length

indicator and the player status indicator can also be changed. Software bottlenecks can be l_ated

by spotting players with long message queues. Figures 2-8 on the next pate illustrates bow all the

above mentioned panels will fit together on a screen.
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Time: 30216

Si e Load Distribution Panel

f
Figure 2-8. Screen Layout for Grid Multiprocessors

_l l_i!i i ii:_ !ii: [_: ::ii _:i+::ii!i _i !iii!iii:[_i::iii::::i! _] ii!::ii]:i [:.:_
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Figure 2-9. Screen Layout for Distributed Systems on a Token-Ring
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2.3. Controlling Instrumentation/Visualization

2.3.1 Displaying Multiprocessors of Different Topologies

Depending on the topology of the simulated multiprocessor, the Multiprocessor Activity Panel

and Process Status Panel will be displayed differently. Figure 2-9 illustrates how a token-ring

connected multiprocessor will be displayed on the screen. The basic operations of the panels are

identical. A line segment joining a site and the ring indicates that site currently holds the token, and

is sending a packet out onto the ring.

2.3.2 Display on Multiple Screens

The AXE Visualization Package can drive multiple displays on multiple workstations connected

to the same network through the X-Window protocols. When two displays are available, the user

may wish to develop an Application Specific Panel to help visualize the state and progress of the

application in more real world terms. For example, Figure 2-10 illustrates the display of a real-

time aircraft tracking system ELINT [7] along side a standard AXE display. Here, we can spot
12

where the aircrafts are currently located (t:fr) and where the real-time software thinks the aircrafts

are (n/') during simulation. It should also be noted that the System Load Panel, the Global Traffic

Panel and the Site Load Distribution Panels are displayed on the second screen, balancing the

anaount of information presented on both screens.

7

tf-
7

t(

Application Specific Panel

2

" 12 12

Time:30216

i _fIic Panel

w

Site l_'..ad Dis_'ibtalitm P_'_el

#
r---

II

::::i::ii::i::::::::i::i::iii:::ii]:::::ii::::::::ii::iMultiprocessor Activity( Panel iiiii!i::i::iii::iiiiiiiii::iii::iiiii::i::iiii

It1 "l[_':":_?:>"'=:_ii:'.:::'_:'-':'2, ' ' Process. Stattlsl_cl r _'_.... i _....

?II rrrn _rm nnll _n

- " fii_iim©_"_m ©- [] "

Time:30216

I I

I

Figure 2-10. Multiple Screen Layout for Token-Ring Systems
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3. Multiprocessor Hardware Models

3.1. Functional Model of a Site

AXE is designed to model multicomputers; they consist of homogeneous processing elements

(sites) connected in a nearest neighbor fashion by physical communication links. Each site is

autonomous -- with its own local memory, processor unit and an operating system kernel

governing message forwarding, task scheduling, as well as memory management. The local

memory of each site is assumed to be large enough to hold any number of players. CPU time is

allocated to players on a FIRST-COME-FIRST-SERVE basis (FCFS) by default at each site. If the

CPU is busy when a player makes a CPU request, the requesting player will be put on a ready-

queue until the CPU becomes available. Players may still be preempted by the mailer processes at

each site responsible for message routing. AXE also implements a ROUND-ROBIN scheduling

algorithm and allows more than one player at a site to process concurrently. The quantum size is

settable by the user but the simulator has to be recompiled.

3.2. Building Multicomputer Models with User-Settable Parameters

3,2.1 Parameters Controlling Connection Topologies

A "machine configuration file" defines the topology and size of the multicomputer to be

simulated. Changes to this file will only take effect when the simulator is recompiled. Table 3-1

summarizes how different multicomputers can be defined by setting constants to different values.

.... Topology

Token rin:g

Grid

I Iypercube

Number of sites

n
, i . m i,

nx by ny

2 n

Constant Definitions

#define TOKNRING
I I I

#define GRID

#define DIM X n x
w

#define DIM Y ny

#define NO OF SITE (n x * ny)

#define lPSC2

#define NO OF DIM n

#define NO OF SITE (2 n)

Table 3-1. Parameters Controlling Connection Topologies

12



3.2.2 CPU and Routing Overhead

Therewereseveraltimingparametersusedin thesimulation.Theoverheadincurredby these
activitiesaredescribedin termsof 5 usersettableparametersasshowninTable3-2:Thop,Ttoken,

Ttokgen,Tdeliver, and Tplace. For hypercubes, messages routing time depends on message

lengths. The default transmit rate is set at 3.07ms/kbyte; this, of course, can be changed easily.

3.3. Message Passing Protocols

Message routing is implemented by two (CSIM) processes, a local mailer and remote mailer at

each site. The local mailer is responsible for helping resident players send out messages. The

remote mailer is responsible for message fgrwarding as well as delivering messages received

from other sites to resident players.

RECEIVING MESSAGES--Whenever a player executes the statement (WAIT some_type),

several possible scenarios exist.

• If a message of the specified type has not arrived for the calling player, the player process

will block (waiting for the message).

• If a message of the specified type has arrived for the calling player, the player is placed on

the ready queue.

• If more than one such message exists, the first one received will be accepted.

Parameter

Thop

Ttoken

Ttokgen

Tdeliver

Tolace

Token-Ring Model (ms)

time needed for a site to place a

packet onto the ring = 0.064

time needed for a bit to travel from

one site to the next 1 = 0.01

time needed for a site to place the

token onto the ring = 0.01

CPU overhead to remove a message

from the ring = 0.144

Multicomputer Model (ms)

time needed for sending a packet to a

neighboring site = 0.73

N/A

N/A

time needed to send a packet to a

local player = 0.01

CpU overhead for process creation = 0.25

Table 3-2. Timing Parameters for Routing and Other Overhead

1 Note that the token circulation time when no messages are being sent is (Ttoken * NO OF SITE).
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SENDING MESSAGES -- The local mailer at the sender site first decodes the mail-address of the

receiver to decide where it resides (i.e. locally in same site in which the sender resides or remotely

on a different site):

• If the receiving player resides locally (e.g. in Figure 3-1, player C at site 2 sends player D a

message at site 2) there are still three possible cases:

i) If the receiving player is either idle or blocked waiting for this message, the message

will be delivered by the local mailer and the receiver placed on the ready-queue.

ii) If the receiving player is running, the local mailer delivers the message to the player's

message buffer. When the player finishes processing, it will check this message buffer

and find the message.

iii) Otherwise, the receiving player is expecting another message (type); this message will

be put on the receiver's message buffer and the receiver remains blocked.

• If the receiving player resides in another site (e.g. in Figure 3-1, player A at site 1 sends

player D at site 2 a message): The local mailer decides that the receiver does not reside

locally (based on the receiver's mail-address) and delivers the message to the remote

mailer. The remote mailer then invokes a routing algorithm to determine the immediate

neighbor through which this message should be routed and sends the message to the

Nmote mailer at the selected n..eighbor. When the message finally arrives at the receiver

site, it is delivered directly (by the remote mailer of that site) to the receiving player.

_ 1
Site-2

.............

,IHIl,l,l,,,lll,, ,I,III ,

Site-3

.......................II1"""_

Figure 3-1. Message Passing on Mullieomputer Models Simulated in AXE

FORWARDING MESSAGES -- The remote mailer is also responsible for forwarding messages

(e.g. in Figure 3-1, the remote mailer at site 2 forwards a message sent by player E at site 1 to

player B at site 3). The simplest class of routing strategies on multicomputers is known as store-
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and-forward.Messageshop from site to site until they reach their destination. Routing target

selection may be static or dynamic. Dynamic routing algorithms select message routes based on

the (static) topology of the communication network as well as the amount of traffic in specific

parts of the system. AXE provides a variety of message forwarding schemes depending on the

chosen architecture. These schemes are described in the following sections.

3.4. "Diagonal-First" Store-and-forward Algorithm

A simple static diagonal routing strategy is used in AXE for an n-nary m-cube type connection

topologies (for a total of m n sites) to implement store-and-forward routing:

• The address of a site Sx is represented by an ordered m-tuple (Xl, x2 .... Xm) -- where 0 <

xi < n;

• Suppose a packet is to be sent from site Sxo, to sxd

- The address of the site of origin (Sxo) is represented as (Xol, Xo2, ... Xom).

- The address of the site of destination (sxd) is represented as (Xdl, Xd2 .... Xdm).

• Define a direction vector A = (xs1, x52 .... XSm) where xsi = Xdi - Xoi

• If Vi xsi = 0, then Sxo - sxd, i.e., the site of destination is the site of origin

• Otherwise, let t = position of max(Ix811, Ix821..... IxSml)

• if Xdt > Xot, then the neighbor site selected is (Xol ..... Xot+l .... Xom)

• if Xdt < Xot, then the neighbor site selected is (Xol ..... Xot- 1.... Xom)

3.5. Message Sending on Hypercube Models

Besides store and forward networks, users may choose to simulate their application using a

model based on the Intel iPSC/2 Hypercube. As part of this model, we have implemented a

version of worm-hole routing [8, 9]. The basic idea behind this type of routing is that a hardware

channel is set up between the two communicating sites that remains established until the entire

message get transmitted. Here is a scenario to illustrate what happens in the system when a

message is sent:

1. Source site (Ss) sends a request for connection (REQ) to destination site (Sd).

2. Intermediate sites receive REQ; routing logic decides who the next target site is and which

output channel to be used.

3. Allocate the output channel if it is free; otherwise, REQ is blocked inside the routing logic

until the required channel is available.

4. Sd receives the REQ and sends an ACK back to Ss.

5. Ss starts to pump the message to Sd.
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6.EOM (endof message)is appendedattheendof themessage.Eachsitereleasesthe

correspondingoutputchannelimmediatelyafterit receivesEOM.

As an example, Source node 1010 wants to send a message to Destination node 1111. The

route the message takes is unique: 1010 ---) 1011 ---) ! 111. The reason is:

1. Compute the "probe" = exclusive-or of Ss'S ID and Sd'S ID is = 0101

2. Ss sends message via channel 0 to node 101i because the least significant 1-bit is bit 0.

3. Compute the "probe" = exclusive-or of 1011 and Sd'S ID is = 0100

4. Because the least significant 1-bit is bit 2, site 1011 uses channel 2 to send message to

node 1111.

3.6. Message Sending on Token-Ring Models

In addition to the above models, AXE is also able to model homogeneous distributed systems

connected via a token ring. A single token ring with a solitary rotating token is modelled. A site

on the ring needs to obtain the token for each message it sends. The token was regenerated by a

site immediately after the message was sent. This method is more efficient than allowing the

message to travel once around the ring before regenerating the token. This allowed for the

possibility of having multiple messages on the ring at any one time. For example, consider a

token ring system of three sites: A, B, and C. A token travelling around the ring goes from A to B

to C before returning again to A. Suppose A wants to send a message to C and B wants to send a

message to A and the token is just about to pass A. A grabs the token and sends its message.

Immediately after sending, it regenerates the token. B obtains the token and sends its message

before the first message reaches C. Thus, two messages are on the ring simultaneously. With this

configuration and the right timing values, if there are n sites on the ring, it is possible to have n

messages on the ring simultaneously. Future versions of AXE could include more elaborate and

realistic protocols such as bi-directional rings, multiple message frames with the appropriate

protocols, dual-redundant and counter-rotation configurations etc..

4. Parallel Software Models

4.1. The Players Programming Paradigm

A parallel computation is represented as a collection of autonomous computing agents known as

players. Players may be created either at compile-time or run-time. Each player is an instantiation

of a specific player type -- which characterizes i.) the structure (i.e. slot-names) or its internal state
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values,ii.) themessagesit understandsandiii.) howit respondsto differentmessagetypes. A
player'sinternalstatevaluesareonlyaccessibleby theplayeritself. Eachstatevaluecontains
eitheranumericalvalueor amail address Of( or "a reference to") some player.

There are no shared data structures. Messages are exchanged asynchronously. In other words,

the sending player does not need to suspend computation and wait for an acknowledgement from

the receiver. By default, messages are processed in the order in which they are received. A player

has the option to accept only those messages under a specific message type (while all the others

queue up temporarily).

During program execution, a player is either ACTIVATED, RUNNING, BLOCKED or IDLE. These

four states are defined as follows:

• ACTIVATED -- player is waiting in the ready-queue (ready to make use of the processor);

• RUNNING -- player is using the processor;

• BLOCKED -- player is waiting for the arrival of a _ message (or) from another

specific player (e.g. the "reply" to a message it sent earlier, the "evaluation" of a future

[ 10] or the "return" of a remote procedure call [11]);

• IDLE -- player is waiting to be activated by the arrival of a message.

In response to messages received, a player may create other players, modify its internal states,

send messages or check and wait for messages of a particular type. An activated player selects the

appropriate handling procedure in response to the message. These handling procedures are defined

as part of the player-type definition.

Player programs can be described using a PARALLEL PROGRAM B.EHAVIOR D.._ESCRIPTION

LANGUAGE (BDL). Activities such as message sending/blocking, player creation as well as

computation can be described using BDL. BDL follows a LiSP-like syntax. Its semantics and

syntax are informally introduced here. A more detailed description of the language is given in the

next section.instantiation

Figure 4-1. shows a simple set of player constructs and interactions. We see two basic

constructs that are crucial to the understanding of the Players Programming Paradigm. A segment

of program text is shown on the left; the corresponding computing agents (i.e. players) are shown

on the right. Some important points to take note of in this example are:

1. The PLAYER-TYPE DEFINITION defines the player's internal state variables that will be

used during the execution of the model, messages it understand as well as how it responds

to incoming messages.

2. Players communicate via message passing with BDL commands such as post and wait.

3. Globally known players are created using the PLAYER-INSTANCE DECLARATIONs.
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4. Each player contains its own copy of its internal state variable which are not directly

accessible by other players.

BDL Program Text

(DefPlayer X ...
(init start_X ack)
(statel ...)
(acquaintancel ...)
(init (record other_X))
(start_X

(post otherX ...) 2
(wait start_X)

...))

(Global X-1 X)
(Global X-2 X)

Instantiations of Player-type X: X1 & X2

l int_nal states&
[acquaintanCes of
IX! ..... ......14

I(_;ostothe_X N ,,t_n,,tst_te_e,

L _ _' acquaintanCes of "x24..._.- ((...
"*post other X

.)t

Figure 4-1. A Simple Diagram of Players and Their Interactions

4.2. BDL --A Behavior Description Language for Parallel Programs

The following conventions will be adhered to when presenting different language constructs in

this section:

• Items in boldface appear verbatim (but case insensitive)

• a term followed by a "*" appears zero or more times

• a term followed by a "+" appears one or more times

• a term followed by a "?" is optional

• two terms separated by a" I" are alternatives

• <identifier> refers to an alphanumeric string (underscores permitted) that does not

begin with a number.

• <number> refers to an integer.

• <c-code> refers to a segment of C program text delimited by braces "{" and "}".

4.2.1 Top-level Constructs

There are two types of top-level constructs in the BDL language: player-instance declarations

and player-type definitions. Pl®,er-instance declaration (Global) instantiates a player at compile

time. Player-type definition (DefPlayer) defines the internal structure of a player type and its

message handling procedures.
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The mail-address of a player created at compile-time is "globally known". Players created at

run-time can send messages to or wait for messages from these "globally known" players using

its name. The Global construct instantiates a player at compile time:

( Global <identifier> <identifier> <location> )

where <location> ::= ( id <number> ) i ( xy <number> <number> )

The first identifier is the name of the player instance. The second is the type of the player. The

location clause requires the programmer to specify the site at which the player is to be placed. The

current implementation of AXE supports two specification methods:

ld -- an integer from 0 to (NO_OFSITE -1) specifies the site ID

xy -- When a 2D Grid is used, Site[x,y] may be specified directly

The Defl_layer construct defines the internal structure of a player type and its message

handling procedures:

( Det'Player <identifier>

( <identifier>* )

( <decl>* )

( <decI>* )

<c-code>?

( <behavior> )+

)

where, <dec1> ::= <identifier> I ( <identifier> <number> )

<behavior> "'= <identifier> <statement>+

The player-type definition can be divided into six parts:

• The first <identifier> indicates the name of the player type

• The first list defines the message types recognized by this type of player. These names wiIl

either appear as the first identifier of the behavior clauses of this player definition or be used

by Watt statements later.

• The second list defines the acquaintances of the player. An acquaintance holds the mail

address of a player. Acquaintances can either be set by creating new players (using the

Make construct) or by receiving mail addresses of created players from others (using the

Record construct).

• The third list defines the state variables of the player. They may be set and used as integer

values.

• Following the lists of definitions comes the preamble. This is an optional segment of C code

that contains support for the player that could not be coded using the standard BDL language

features. This sequence of C statements may contain data declarations as well as executable
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code. It will beinsertedinto theplayer'sgeneratedcodejust beforethemainmessage

processingloop.

• Thelastpartof theplayerdefinitionis thelist of behavior clauses. Each behavior clause

comes with a head-- indicating the corresponding message type and a tail -- a list of

executable statements. When an idle player receives a message, it checks the in-coming

message's type against the head of each behavior clause. If it finds a match, the tail will be

executed. If not, the message will remain in the buffer and the player remains idle until a

message whose type matches the head of a behavior clause arrives. That message may still

be extracted should the player execute the Wait statement.

Both acquaintances and the state variables may be declared as scalars or vectors (1-dimensional

arrays). Individual elements of the vector may be referred to by the aref construct. Array indices

begin at 0. The user may also insert top-level C code into the file generated by BDL. This code

would likely include data structures and routines that cannot be defined using standard BDL

constructs.

4.2.2 Player Creation

The Make construct creates a player at run-time:

( Make <placement>? ( ( <identifier> I * }

where <placement> ::= :any

I :by_load

I :from_file

I :at <location>

I :default

<identifier> )+ )

The first parameter specifies the placement scheme for this creation. It directs the operating

system at the creator site how to choose the site where the created player will reside. The current

version of AXE supports several placement schemes:

• The simplest placement scheme is any-- players are created at randomly chosen sites.

• The by_load scheme creates a player at the site with the fewest resident players. In case

of ties, the site with the smallest site ID is chosen.

• The from_file scheme reads the site ID's to be used from a text file. The name of this file

is given in the configuration file (see [6]). Upon seeing an end-of-file, AXE begins reading

at the start of the file again.

• The at scheme allows the user to specify the resident site of the new player explicitly. The

location is specified as with the Global construct except that expressions (as opposed to

numbers) are also permitted when specifying sites.
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• The default scheme instructs AXE to check the configuration file for the scheme to be

used (see [6]).

The remaining parameters are pairs of slots and player types. The first value of each pair

designates a location for the mail address of the newly created player. If a "*" is given for this

location, the address of the newly created player is thrown away. If an identifier is given, it is

assumed to be either one of the creator player's acquaintances or a global player name.

4.2.3 Data Manipulation

BDL provides support for accessing, modifying, and computing other values with local

variables. As stated above, BDL supports vectors (1-dimensional arrays). Individual elements of

these arrays may be accessed using the Aref construct:

(Aref <identifier> <expression> }

Scalar values may be set using the Setq construct:

( Setq <lhs> <expression> }

where <lhs> :: = { Aref <identifier> <expression> ) I <identifier>

In addition, the value of a scalar may be modified using the Dee and Ine constructs:

( ( Dee I Ine ) <lhs> )

They decrement and increment their argument respectively.

<expression> refers to either a scalar value (either an integer constant or an internal state

variable) or a compound expression built using the BDL operators. In addition, a C code segment

surrounded by braces may be used anywhere an expression is called for. In this way, users may

perform calculations that are not available within standard BDL. BDL provides the basic

arithmetic operators (+, -, *, /) as follows:

(<operator> ( <expression> )+ )

If only one argument is passed, the results for "-" and "/" are the negative and reciprocal of the

argument respectively.

4.2.4 Message Passing

The Post construct is used for message sending:

(Post <acquaintance> <message-type> <message-term>*

where, <message-term> ::= self

1 <acquaintance>

I <expression>
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I ( <identifier> <expression> <expression> )

i :length <expression>

The <acquaintance> term refers to the mail address of the receiving player. The <message-

type> term specifies the message handler procedure to be used by the receiver. The body of each

message may be made up of any combination of message terms:

* sell'-- the mail address of the sending player;

* <acquaintance> -- a mail address of a player;

o <expression> -- the resulting integer value of the expression;

. ( <identifier> <expression> <expression> ) -- portions of arrays; the

<identifier> indicates the array; the second argument refers to the starting element; the

third refers to the number of elements to be passed;

° :length -- this form allows the length of the messages to be specified. By default, each

message is of length 1 (Byte).

The Reply construct is similar to the Post construct except that no receiving player (i.e.

<acquaintance>) has to be specified. Suppose player b sends a message to player a and a now

executes a Reply statement:

i) if no Wait statements have been executed before the Reply statement, a replies to b;

ii) otherwise, a replies to the sender of the message which a accepted with the Wait

statement most recently executed.

The syntax of the Reply statement is as follows:

(Reply <message-type> <message-term>* )

Besides receiving messages when idle, players may wait for messages within the body of a

behavior clause:

( (Wait I Reeetve) <message-type> ( :from <acquaintance> )? )

If a message of the specified type has not arrived, the executing player will blockl The :from

key-word allows the receiver to wait for a message of a certain type to arrive from a particular

la_. Executing the Wait statement will change the player to whom the executing player replies

whereas Receive will not.

The Record construct extract the arguments associated with the last message received into the

corresponding states:

(Record ( <acquaintance>

I <lhs>

t (<identifier> <expression> <expression> ))+ )

Data extraction is done on a term-by-term basis; terms in the Record are matched with the

corresponding term in the Post that sent the message. If the receiver executes Record with
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fewerargumentsthanthesenderdoeswith Post, these extra values will be dropped. On the

contrary, if Record is called with too many arguments, the extras will be filled with zeros.

If a scalar is sent but a vector is expected, the first element of the vector is set to the scalar

received and the remaining elements are set to zero. If a vector is sent but and a scalar expected,

the scalar is set to the In'st element of the vector. If the vector sent is longer than the receiving

vector, as many elements as possible are recorded (without going beyond the bound specified in

the Record). If there are too few, the remaining elements are set to zero.

4.2.5 Flow Control

The If statement evaluates a boolean expression and executes one of two alternatives depending

on the value of the expression:

(If <boolean-expression> <statement> <statement>? )

where, <boolean-expression> ::= <expression>

<relop> ::= < I <-

I ( <relop> <expression> <expression>

I (or <boolean-expression>+ )

I (and <boolean-expression>+ )

J == I <> I >= I >

If the boolean expression evaluates to true (or non-zero), the first statement is executed, otherwise

the second one (if present) is executed. Multiple statements may be encapsulated using the

Progn construct.

The Repeat construct defines a loop to be executed a specified number of times:

(Repeat <expression> <statement>+ )

Branch statements allow probabilistic behavior to be modelled:

( Branch ( ( <expression> <statement>+ ) 1+ )

The Branch statement contains a list of clauses, each of which has a specified probability of

occurring. For example the following statement indicates that the first branch is taken with a

probability of 40%, the next one 50% etc..

(Branch (40 (...) (...) ... )

((+ 20 30) (...) (...) ... )

(I0 (...) (...) ... ))

The current implementation does not check that the probabilities of all the branches add up to

100%. Consider the following statement: (Branch {v1 (... } (...) ... ) (v2 (...) {... )

... ) {v3 (...) (...) ... )). A random number (rn) between 1 and 100 is selected. The first

branch will be taken ifrn < v1; the second branch will be taken if v1 < rn < (V1 + V2), and so on.
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4.2.6 Miscellaneous

TheRun construct requests to use the processor for a specified duration. It should also be noted

that these "time units" are meaningful only when discussed in conjunction with other

characteristics of the hardware (such as communication link bandwidth and context-switch

overhead etc.). It's syntax is:

( Run <expressions> )

The Hold construct instructs AXE to advance the specified amount of simulation time without

requesting the use of a processor, in other words, the caller player pauses for a specified amount

of time before executing the next statement, It's syntax is:

( Hold <expression> )

The Funeall construct is used to call predefined C routines. Integer arguments are listed after

the function name:

( Ftmeall <function-name> <expression>* )

The Progn construct allows multiple statements to be parsed as a single statement. It is

particularly useful with the If statement discussed earlier:

( Progn <statement>+ )

The Destroy construct terminates the caller player process: ( Destroy )

The Genesis construct marks the beginning of the simulation. All events that occur before

Genesis "take place at time zero". Genesis should be called exactly once at the beginning of

each experiment to start the simulation clock. Genesis requires no argument: ( Genesis )

The Terminate construct is called exactly once at the end of each experiment. It indicates that

simulation is complete. Terminate requires no argument: ( Terminate )

In addition to all the statements described above, BDL permits the user to insert C code

(surrounded by "{" and "}") anywhere a statement is permitted. This allows the user to perform

tasks that are not easily specified using BDL.

4.3. Building Abstract Software Models

The development of abstract software models benefit at least three important research activities in

parallel processing:

. PERFORMANCE EVALUATION OF ALTERNATIVE PROBLEM FORMULATION STRATEGY-

Usually, there is more than one way in which an application can be formulated as computing
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processesto beexecutedin parallel.Theability to modelthesealternativesquickly and

evaluatetheirperformanceontargetparallelarchitecturesenablessoftwarebottlenecksto be
locatedlongbeforetensof man-yearshavebeenspentonactualimplementation.

• PERFORMANCE PREDICTION ON NOVEL HARDWARE SYSTEM ARCHITECTURE- In the design

of large special-purpose hardware systems (such as the Data Management System of Space

Station Freedom), the choice of processors and communication links has to be such that they

can support the software that is going to be run on it. Unfortunately, these decisions have to

be made before the software has actually been written; only abstract functional specifications

exist. The ability to build approximate models from software specification and observe their

performance impact on different processors and communication links will help determine

suitable candidates.

° DEVELOPMENT OF LOAD-BALANCING ALGORITIIMS -- Finally, with the development of

resource management algorithms for highly parallel systems, candidate strategies have to be

tested over a wide range of hardware architectures and applications with different behavior

characteristics to determine its performance and robustness. Simulating program execution

at the instruction level is unnecessary and too time consuming. BDL models preserve

program behavior, and at the same time, enable simulation to proceed quickly, allowing

many experiments to be performed rapidly.

Building parallel program models with BDL involves four basic steps:

i. study and onderstand the program text and structure;

ii. specify the program model in BDL;

iii. identify the portion of computation that can be abstracted:

• use the Rtm statement for data-independent computations; or

° use probabilistic branches otherwise;

iv. simulate the model and compare its behavior with the actual program:

• find out the limitations of the model; and

° make modifications if necessary.

This process is best explained by using two examples -- the N-body problem and Quick-sort.

4.3.1 The N-body Problem

N heavy bodies are suspended in 3-dimensional space at some initial

coordinates. They are subsequently released simultaneously and allowed

to move under the influence of gravitational forces they exert on one

another. The problem: plot their trajectories.
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A possible distributed formulation involves creating one player for each body (as shown in

Figure 4-2). The computation begins by having a st art message sent to each player. Each

player responds by sending its current position 2 to the other (N-l) players. Whenever the new

position of another body is received, the internal states of the receiver are updated. Its new position

and velocity are calculated, recorded locally and transmitted back to the sender.

(DefPlayer Body PLAYER-TYPE DEFINITION

(init start update) message names

(bl • • • bn-1) mail-addresses and

(my_coords my_velocity crdl crd2 ... crdn-l) numerical states

( ini t INITIALIZATION

(record b 1 b2 • • . bn-1 get neighbors' addresses

Crdl crd2 • • • crdn-1 ) ) & initial positions

( s t ar t STARTMOVING

(post bl update my_coords) tell everybody where I am

• . . and wait for their responses

(post bN_ 1 update my coords))

(update new position arrived!

(if (= sender bl) (record Crdl) find sender & update its position

(setq my_coords compute my position

(funcall compute_new_coords self))

(setq my_velocity and new velocity

(funcall compute new_velocity self))

(post some plotter update my_coords) plot!

(re_l_ update my coords) )) and replythe sender

Figure 4-2. BDL Schematic of a "Body" Player in the N-Body Problem

Two observations can be made:

a) The most time consuming statements in the program text are the ones which compute the

new position and velocity (as indicated by "[[_").

b) The time spent computing these two statements is independent of the actual position of all

the other players.

If the statements in question were replaced (as shown in Figure 4-3) with NO-OP statements that

simply consume time -- (run some__time), the interaction of the program with the

2 In order to keep the code simple, we are only keeping track of one dimension of the bodies; the CRD state
variables could easily be duplicated to hold the other dimensions of the bodies.
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multiprocessordoesnotchangeto an outside observer. In other words, the number, sequence and

pattern of messages delivered and the demand posed on the processor by each player remains

identical to that of the actual program. As far as simulation is concerned, advancing the "clock"

using the Rttn statement is much more economical than emulating the actual instructions that

solve the differential equations. Therefore, simulating this program model will enable us to

minimize turn-around time while preserving program behavior as much as possible.

(DefPlayer Body

(init start update)

(bI ... bn- I)

()

(init

(record bl b2 •••

(start

(post bl update)

(post bn-i update) )

(update

(run 2)

(run 40)

(run 50)

(post some_plotter

(reply update)))

bn-i ))

update)

PLAYER-TYPE DEFINITION

message names

same mail-addresses

no need to store actual coordinates

INITIALIZATION

get neighbors' addresses

START MOVING

tell everybody where I am and

wait for their responses

NEW POSITIONARRIVED!

time spent recording new position

time spent compute my position

and new velocity

pretend to plot!

and reply the sender

Figure 4-3. BDL Abstraction of a "Body" in the N-Body Problem

A few more points need to be made with regard to using the Run statement in conjunction with

any multiprocessor model for the purposes of simulation:

1. CPU overhead incurred for message passing (Post, and Record), blocking (Walt) and

player creation (Make) does not need to be accounted for using the Run statement. Such

parameters, together with the time involved in sending a packet across sites, will be

supplied by multiprocessor model (see Table 3-2 in Section 3.3).

2. User-specified computation is free -- this includes the use of If, l:'rogn, Repeat and

Branch statements as well as any mathematical operations.

3. The amount of time actually required for a computation can be obtained either by experi-

mentation or estimation:

• experimentation -- measure the actual execution time a portion of the program requires

at one site of the target multiprocessor; or
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• estimation -- generate the corresponding machine instructions (by a compiler) and

estimate the actual number of cycles needed based on a processor architecture.

4. The amount of time units is only meaningful when compared to the delay for message

sending and other CPU overhead charges.

4.3.2 Quicksort

(DefPlayer quickSort

(init done)

(left right master)

(pivot

Unsorted_Array Array_Size Left_Array

(init

(record Unsorted_Array master)

(setq Array_Size (funcall compute_array_size)

(if (<= Array_Size i)

(progn

(post master done Unsorted_Array)

(destroy))

(progn

PLAYER-TYPE DEFINITION

message names

acquaintances

variable list

Right_Array)

INITIALIZATION

get an array

compute its size

check array size

if the above condition is true

send array back to parent

finish, therefore self destruct!

otherwise

(setq pivot (funcall choose Unsorted_Array))

(setq Left_Array partition & exchange array members to get "left" array

(funcall create_lft_array pivot Unsorted_Array)

(setq Right_Array partition & exchange array members --) "right" array

(funcall create_rght_array pivot Unsorted_Array)

(make left quickSort) create a player to sort leftarray

(make right quickSort) create a player t0 sort rightarray

(post left init Left_Array self) send off left array

(post right init Right_Array self) send off right array

(wait done)

(record Left Array)

(wait done)

(record Right_Array)

(setq Unsorted_Array

(funcall merge_arrays

(post master done Unsorted_Array)

(destroy)) ) ) )

wait for acknowledgement from one of the players

left or right array is not important

wait for acknowledgement from the other player

left or right array is not important

merge the two sub-arrays

pivot Left_Array Right_Array))

return sorted array to parent

exit

Figure 4-4. BDL Specification of Quick-Sort
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An array of numbers is to be sorted. An element of the array (say a) is

chosen to partition the array into two sub-arrays, with elements in one sub-

array < _ and the other sub-array elements > a. This procedure is repeated

recursively until the size of the sub-array is less than or equal to 1. The

sub-arrays are then reassembled recursively into a single sorted array.

In a distributed environment, one player is created for each Quicksort process (as shown in

Figure 4-4). The computation begins by checking whether the size of an array is less than or equal

to l. If the size is greater than 1, the partition and exchange procedures will be processed, and a

player will be created to sort each sub-array. The calling function will wait until both of the called

functions finish their processes, then merges the two sub-arrays into a single array.

(DefPlayer quickSort

(init ack)

(left right master)

(Array_Size

Partition_Time Merge_Time)

(init

(record Array_Size Partition

(if (<= Array_Size i)

(progn

(post master ack)

(destroy))

(progn

(run (* Partition Time

(make left quickSort)

(make right quickSort)

(post

(post

(wait ack)

(wait ack)

(run (* Merge_Time

(post master ack)

(destroy)) ) ) )

PLAYER-TYPE DEFINITION

message names

acquaintances

array size and estimated time

per element to partition & merge arrays

INITIALIZATION

Time Merge_Time master)

check array size

if the above condition is true

send the acknowledgement back to the calling function

exit

if the condition is false

Array_Size) ) time spent partitioning array

create a "left" player to sort "left" sub-array

create a "right" player to sort "right" sub-array

left init (/ Array_Size 2) send parameters to left player

Partition Time Merge_Time self)

right init (/ Array_Size 2) send parameters to right player

Partition_Time Merge_Time self)

wait for acknowledgement from one of the players

wait for acknowledgement from the other player

Array_Size) ) time spent merging two arrays

send acknowledgement back to the caller player

exit

Figure 4-5. BDL Abstraction of Quick-Sort
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Two observationssimilarto theN-body problem can be made:

a) The most time consuming lines in the program text are the ones which partition and merge

arrays. (as indicated by "[[_").

b) The time spent on these statements is independent of the partition and merge processes of

all the other players.

As far as simulation is concerned, sorting a real array is not required. The time needed to

partition and merge arrays can be estimated as proportional to the array size. If the lines in

question were replaced (as shown in Figure 4-5) with a Run statement, program behavior as

observed by the multiprocessor does not change.

4.4. Summary

BDL can be used to model parallel computations which exploit parallelism explicitly at the

process/procedure level. There are no shared data-structures. Players communicate via

asynchronous message passing. The following computing paradigms can be modelled easily

using players [12]:

• PARALLEL CODE-BODIES -- e.g. fork/join [13, 14], parBegin/parEnd [15];

• COMMUNICATING PROCESSES -- e.g. Concurrent Pascal [16] and CSP [ 17];

• MULTILISP [18],futures [10] and streams [19];

• REMOTE PROCEDURES [11]; and

• a subset of the ACTOR programming paradigm [20] known as the serializers [21].

BDL also provides the necessary constructs to model the following aspects of parallel programs:

• behavior of individual players -- models the different functionality of various computing

agents in the parallel computation;

• player Creation -- both compile-time declaration and run-time creation;

• communication -- for data transfer and synchronization between computing agents; and

• processing in response to messages received -- in order to construct an accurate model, the

processing time can be gathered by monitoring actual program execution or by counting

machine instructions.

As far as building program models is concerned, the data-dependent behavior of programs

remains the biggest challenge for model builders. Although the use of probabilistic branches may

solve some simple cases, it is, in general, very difficult to decide what an appropriate level of

modelling should be.
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For example, two alternative player representations of a "file" are shown in Figure 4-6. The

model on the left checks whether the file has already been reserved before granting a user write-

access. The one on the right, however, is built based on an observation that "only (say) 5% of

users try to gain access to files already reserved". BDL allow models of either level to be

specified. It is up to the researcher to decide, recognize and remember what level of abstraction

his/her model was constructed for. A model should never be interpreted beyond its limitations.

(DefPlayer File

(... reserve ...)

(my_writer ...)

(reserve

(if (<> my_writer NIL)

(reply ack NIL)

(progn (setq my_writer sender)

(reply ack T))))

J )

(DefPlayer File

(•.• reserve •..)msgsit understands

(my_writer ...) acquaintance names

(reserve RESERVE msg received

(branch

(.05 (reply ack NIL)) REFUSE!

(•95 (reply ack T))))

• • • )

ACCEPT!

So

Figure 4-6. Two BDL Models of a "File" Player

Conclusions and Future Research

AXE, AN EXPERIMENTATION ENVIRONMENT, is created to facilitate research with resource

management strategies for parallel systems. It provides an integrated environment for the

following activities:

• COMPUTATION MODEL SPECIFICATION using BDL -- a Behavior Description Language

for parallel computations. BDL can be used to describe computation based on various

programming paradigms such as CSP, remote procedures, data-flow, and actors.

•MULTIPROCESSOR ARCHITECTURE SPECIFICATION -- By changing certain simple

parameters, the architecture of the hardware may be modified. This includes inter-

connection topology, network speed, routing algorithms as well as operating system

scheduling algorithms.

• SIMULATION -- A discrete-time event-driven simulator based on CSIM is responsible for

predicting the execution time of BDL program models on various multiprocessor models.
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• DATA COLLECTION w Data that indicate program behavior and resource utilization/

contention are gathered automatically. These data may be used for evaluation of resource

management strategies as well as software and hardware architecture alternatives.

• EXPERIMENTATION -- The researcher is able to study resource management strategies as

well as various issues in parallel processing such as problem formulation, alternate

hardware architectures, and operating system algorithms.

During simulation, the activities on the multiprocessor are displayed dynamically via a color

monitor. These include message transmission, length of "ready-queue" at each processing

element as well as overall system load.

The AXE Modelling Package is being augmented to model Intel Hypercube 15(iPSC/3) and

various multiprocessor testbed configurations for the NASA High Performance Computing and

Communications Program. Various panels from the AXE Visualization Package will be integrated

with other tools for displaying data collected from these multiprocessor testbeds.
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